SOLVING AN ABSOLUTE VALUE EQUATION

x is the distance	of the quantity x from the number 0	
-6 =6		
because the quantit	xy - 6 is 6 units away from the number 0	
or as a diagram,	←	
The equation	x = 8	is equivalent to
the sentence	"the quantity x is 8 units away from the number 0"	which corresponds to
the diagram	←	which gives
the solutions		
The equation	3x+5 =9	is equivalent to
the sentence	"the quantity is units away from the nur	mber 0" which corresponds to
the diagram	←	which gives
the solutions		
To solve a more co	emplicated equation like $2 3-2x +7=31$,	
first isolate the absolute	olute value,	
which is equivalent	t to	
the sentence	"the quantity is units away from the nur	mber 0" which corresponds to
the diagram	←	which gives
the solutions		

SOLVING AN ABSOLUTE VALUE INEQUALITY

Inequalities involving absolute values

do **NOT** behave like either equations involving absolute values

NOR like inequalities not involving absolute values

INEQUALITIES IN WHICH THE ABSOLUTE VALUE IS LESS THAN A QUANTITY

The inequality	x < 5		is equivalent to
the sentence	"the quantity x is less than 5 units away from	which corresponds to	
the diagram	<	>	which gives
the solution			
The inequality	6 – <i>x</i> < 7		is equivalent to
the sentence	"the quantity is away from the number 0"	_ units	which corresponds to
the diagram	<		which gives
the solution			
To solve a more co	complicated inequality like $2 x+4 -11<1$,		
first isolate the abs	solute value,		
which is equivaler	nt to		
the sentence	"the quantity is away from the number 0"	_ units	which corresponds to
the diagram	<	 →	which gives
the solution			

<u>INEQUALITIES IN WHICH THE ABSOLUTE VALUE IS GREATER THAN A QUANTITY</u>

The inequality	x > 3		is equivalent to
the sentence	"the quantity x is more than 3 units away	from the number 0"	which corresponds to
the diagram	<		which gives
the solution			
The inequality	4 <i>x</i> + 1 > 15		is equivalent to
the sentence	"the quantity is away from the number 0"	units	which corresponds to
the diagram	<	-	which gives
the solution			
To solve a more comp	plicated inequality like $5+3 1-x > 9$,		
first isolate the absolu	ite value,		
which is equivalent to			
the sentence	"the quantity is away from the number 0"	units	which corresponds to
the diagram	<	──	which gives
the solution			

Solve 11 - 4 |x| > 3

Solve 7 + 2 |x - 4| > 13